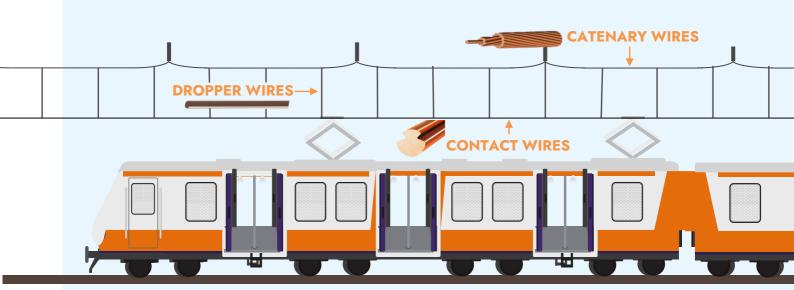


APAR Industries Limited, founded by Late Mr. Dharmsinh D. Desai in the year 1958 is one among the best established companies in India operating in the diverse fields of electrical, metallurgical and chemical engineering. Over the ensuing years it has evolved to be a 1 Billion US Dollar diversified company offering value added products and services in Power Conductors, OPGW Products, Wire & Cables, Copper Products and Petroleum Specialities.

A technology - driven and customer focused vendor to some of the most brand enhancing power companies in India and abroad, APAR has strengthened the business of its customers through proactive product development, timely product delivery and superior product attributes by


reinforcing product innovation, cost leadership and premium quality and living its vision 'Tomorrow's Solution Today' resulting in Reliability, Respect, Reputation and Repeat business customers of Power across Conductors, OPGW, Wire & Cables, Copper Products and Petroleum Specialties.

RAILWAY OVERHEAD CONNDUCTORS

UNDERSTANDING OUR PRODUCTS

APAR manufactures product range that covers the entire spectrum of bare wires used in electrically operated railway infrastructure:

All above product comply with all the National and International standards, EN, ASTM, IS as well as RDSO (Indian railway) Specification.

CONTACT WIRE (HDGC) /TROLLEY WIRES

Available in:

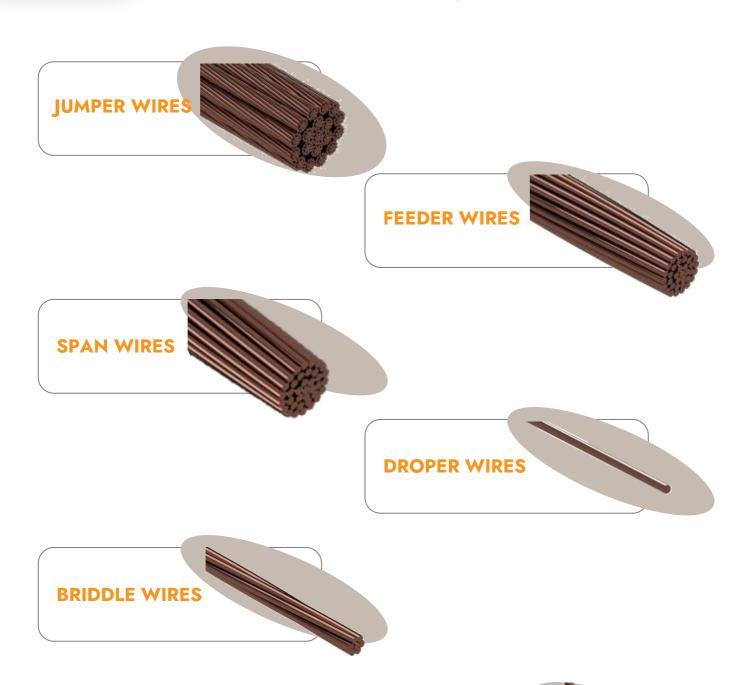
Diverse alloys

Diverse Section From 80 mm² to 193 mm²-

Diverse shapes: circular, flat

CATENARY WIRES

Available in:


Diverse Section

Diverse Alloys Diverse Composition

RAILWAY OVERHEAD CONNDUCTORS

PRODUCT RANGE

ANTI-CREEP WIRES

COPPER & ALLOYS

- •The basic application of contact wire is carrying current for railway traction.
- •Electric trains that collect current from overhead lines use a device such as a pantograph, Low collector or trolley pole. It presses against the underside of the lowest overhead wire that is called CONTACT WIRE.
- •Mainly contact wire made from copper or copper alloy with different cross section area from 80 mm² to 193 mm² in different alloy form.

Different Type of Copper alloy is mentioned below:

1) Normal and High Strength Copper:-

Mainly used in INDIA RAILWAY-RDSO.

Copper ETP is still the most universal metal, but is increasingly being replaced by alloys with better characteristics. Non-alloyed Cu offer the best possible conductivity, and is typically used in contact wires for tramways and conventional railway lines but is most appropriate for auxiliary conductor and feeder cables.

2) Copper-Silver Alloy:-

This alloy offer electrical and mechanical characteristics similar to copper, but has better thermal stability. This allows higher over current on DC lines, without increasing the wear on the contact wire.

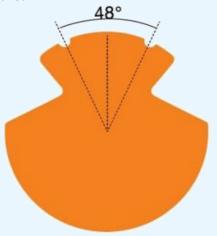
3) Copper-Cadmium Alloy:-

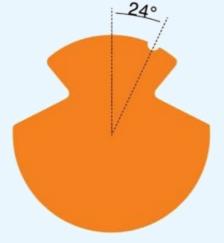
Copper cadmium combines high strength with good conductivity. With unsurpassed flex, CuCd is highly resistance to the frequent vibrations that ideal choice for high energy efficiency, reduced voltage drop and operational cost saving.

4) Copper-Magnesium Alloy:-

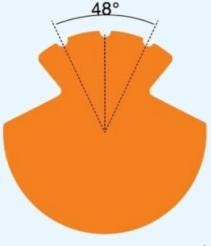
Copper Magnesium has the highest tensile strength when compared to other alloy, making it the perfect alloy for contact wire in high speed line with speed well above 300 km/h. Together it is the perfect alloy for the messenger/catenary cable, having the appropriate strength to carry the entire catenary system.

5) Copper-Tin Alloy:-


The development of a high performance Copper-Tin alloy was an imperative, displaying the right balance of electrical and mechanical properties. CuSn has applications for use in the contact wires for both high-speed and conventional railway lines.


Identification of Different Type of Contact wire: *As per EN 50149:2012

All wire manufactured from alloys shall be clearly identified for normal and high strength copper and copper-silver, copper-cadmium. Copper-magnesium and copper- tin alloy the method of identification shall be by identification grooves as shown in below

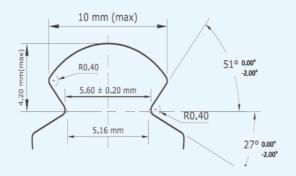

figure.

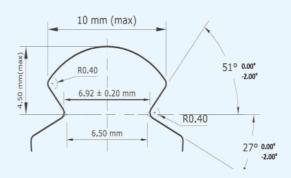
Contact wires made of copper-silver alloy have two identical identification grooves on the upper lobe of the wire

Contact wires made of copper-tin alloy have one identification groove on the upper lobe of the wire at an angle of 24° from the vertical.

Contact wires made of copper-magnesium alloy have three identification grooves on the upper lobe of the wire.

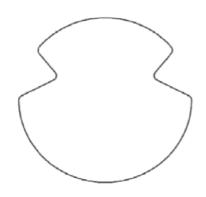
Contact wires made of copper Cadmium alloy have one identical groove on the upper lobe of the wire

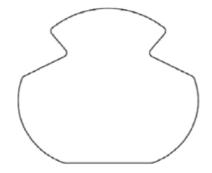



Contact wires made of pure copper (Cu-ETP) do not have identification grooves

Identification of Different Sections of Contact wire: *As per EN 50149:2012

Whatever cross section of the contact wire id used, the dimensions of clamping grooves are accordance with either TYPE A or TYPE B as given in below figure.




TYPE A CLAMPING GROOVE

TYPE B CLAMPING GROOVE

Also, whatever clamping grooves is used; the main two types of profile are in accordance with either CIRCULAR TYPE or FLATTENED TYPE as given in below figure

FLATTENED TYPE WIRE

Nomenclature based on clamping grooves and shape of the contact wire Example, AC-107

- 1) We can manufacture AC-107 with Type A Clamping groove having Circular bottom.
- 2) We can manufacture AC-107 with Type B Clamping groove having Circular bottom.
- 3) We can manufacture AC-107 with Type A Clamping groove having Flat bottom.
- 4) We can manufacture AC-107 with Type B Clamping groove having Flat bottom.

Identification of Different Sections of Contact wire: *As per EN 50149:2012

			ımon alloy c						
		Some po	ssible mate	rial compos					
Materialdesig	nation					osition in %			
- material accing	, indition		Element						
Material group	Symbol		Cu	Bi	0	P	Pb		elements
Waterial group	Cymbol					'		Total	Excluding
	Cu-ETP	Min.	99.90a	-	-	-	-	-	Ag, O
		max.	-	0.0005	0.040 b	-	0.005	0.03	
	Cu-FRHC	Min.	99.90a	-	-	-	-	-	Ag, O
Normal and high	Cu-FRHC	max.	-	-	0.040 b	-	-	0.04	
strength copper	005	Min.	99.95	-	-	-	-	-	Ag
	Cu-OF	max.	-	0.0005	С	-	0.005	0.03	
	C., HCD	Min.	99.95	-	-	0.002	-	-	Ag, P
	Cu-HCP	max.	-	0.0005	С	0.007	0.005	0.03	
			_		_		_	Other	elements
			Cu	Bi	0		Ag	Total	Excluding
Normal and high	0.4-04	Min.	Rest	-	-	-	0.08	-	Ag, O
strength copper-silver- alloy	CuAg, 0.1	max.	-	0.0005	0.04	-	0.012	0.03	
					_			Other elements	
			Cu	Mg	Sn	Cd	р	Total	Excluding
	0.1400	Min.	Rest	0.1	-	-	-	-	Mg, P
Copper-magnesium	CuMg, 0.2	max.		0.3	-	-	0.01	0.01	
alloy		Min.	Rest	0.4	-	-	-	-	Mg, P
	CuMg, 0.5	max.		0.7	-	-	0.01	0.01	
		Min.	Rest	-	1.15	-	-	-	Sn
Copper-tin alloy	CuSn, 0.2	max.		-	0.55		-	0.01	
		Min.	Rest	-	-	0.5	-	-	Cd
Copper- cadmium-	CuCd, 0.7	max.		-	-	0.8	-	0.01	
alloy		Min.	Rest	-	-	0.8	-	-	Cd
loy	CuCd, 1.0			-	-	1.2		0.01	

a Including silver, up to a maximum of 0,015 %.

NOTE 1 Composition of all copper types are in accordance with EN 1977:1998.

NOTE 2 The total of other elements (than copper) is defined in EN 1977: 1998 as the sum of Ag, As, Bi, Cd, Co, Cr, Fe, Mn, Ni, 0, P, Pb, S, Sb, Se, Si, Sn, Te and Zn, subject to the exclusion of any individual elements indicated.

b Oxygen content up to 0,060 % is permitted, subject to agreement between the purchaser and the supplier.

c The oxygen content shall be controlled by the manufacturer so that the material conforms to the hydrogen embritlement requirements.

Physical constant:

*As per EN 50149:2012

Material Group	Cu-ETP & Hard Darwn	CuAg	CuMg	CuSn	CuCd
Nominal Density at 20°C (g/cm ³)	8.89	8.89	8.89	8.92	8.945
Final Modulus of Elasticity (Gpa)	120	120	120	120	120
CLE (per °C)	17 x 10 ⁻⁶	17 x 10 ⁻⁶	17 x 10 ⁻⁶	17 x 10 ⁻⁶	17 x 10 ⁻⁶
Maximum Resistivity		47.77	22.4 for CuMg 0.2 Normal Conductivity	20.05 for CuSn 0.2 Normal Conductivity	20.05 for CuCd 0.7
at 20°C ohm.mm²/Km	17.77	17.77 for CuAg 0.1	21.55 for CuMg 0.2 High Conductivity	21.55 for CuSn 0.2	21.55 for CuCd 1.0
			27.78 for CuMg 0.5	High Conductivity *	loi caca 1.0
Temperature Coefficient (per °C)	0.0038	0.0038	0.0031 0.0027 for CuMg 0.5	0.0032	Agreed between purchaser and manufacturer

^{*} CuSn 0.2 (High Conductivity) was previous denoted CuSn 0.4

Contact Wire as per EN 50149: 2012

Maximum Resistance/Kilometer

					Materi	al designation a								
Nominal cross section mm²	Cu-ETP Cu-OF Cu-FRHC Cu-HCP	CuAg 0.1	CuMg CuMg 0.5		CuSn 0.2	CuCd 0.7	CuCd 1.0 CuSn0.2 (high conductivity) b CuMg 0.2 (high conductivity)							
80	0.229	0.229	0.289	0.385	0.309	0.258	0.278							
100	0.183	0.183	0.231	0.286	0.247	0.207	0.222							
107	0.171	0.171	0.216	0.268	0.231	0.193	0.208							
120	0.153	0.153	0.192	0.239	0.206	0.172	0.185							
150	0.122	0.122	0.154	0.191	0.165	0.138	0.148							
a value	in Ω/Km at	20°C -	Calcula	ted on	minimu	m cross section area								
b CuSn	0.2 (Gigh C	onducti	vity) wa	as previ	CuSn 0.2 (Gigh Conductivity) was previous denoted CuSn 0.4									

¹⁾ In a temperature range from -50°C up to 100°C the coefficient of temperature for the resistance is constant

Tensile Strength, Breaking load and after Elongation Fraction

Material	Designation	Nominal cross section		elongation after ure A200	Minimum tensile strength	Minimum
Waterial	Designation	mm²	min %	Max.%	Mpa a	breaking load kN
		80	3	10	355	27.5
	Cu-ETP	100	3	10	355	34.5
Normal strength Copper	Cu-FRHC Cu-HCP	107	3	10	350	36.3
digh strength copper and high strength copper-silver alloy Normal strength copper-silver alloy Copper-magnesium alloy	CuOF	120	3	10	330	38.4
ligh strength copper nd high strength opper-silver alloy lormal strength opper-silver alloy		150	3	10	310	45.1
		80	3	8	375	29.1
High strength copper	CuETP CuFRHC	100	3	8	375	36.4
and high strength	CuHCP	107	3	8	360	37.4
Normal strength	CuOF	120	3	8	360	41.9
	CuAg 0.1	150	3	8	360	52.4
		80	3	10	365	28.3
		100	3	10	360	34.9
	CuAg 0.1	107	3	10	350	36.3
copper-sliver alloy		120	3	10	350	40.7
		150	3	10	350	50.9
		80	3	10	460	35.7
Copper-magnesium alloy	CuMg 0.2	100	3	10	450	43.7
		107	3	10	440	45.7
	CuMg 0.2 (high	120	3	10	430	50.1
	conductivity)	150	3	10	420	61.1
		80	3	10	520	40.4
	CuMg 0.5	100	3	10	510	49.5
Copper-magnesium		107	3	10	500	51.9
alloy	Ü	120	3	10	490	57.0
copper-magnesium Copper-magnesium		150	3	10	470	68.4
		80	2	8	460	40.4
	CuSn 0.2	100	2	8	450	49.5
Copper-Tin Alloy		107	2	8	430	51.9
,	CuSn 0.2 (high	120	2	8	420	57
	conductivity)	150	2	8	420	68.4
		80	2	7	430	33.4
		100	2	7	430	41.7
Copper-cadmium Alloy	CuCd0.7	107	2	7	430	44.6
Sopper-cadmium Alloy		120	2	7	430	50.1
		150	2	7	430	62.6
		80	2	7	455	35.3
		100	2	7	445	43.2
Copper-Tin Alloy	CuCd1.0	107	2	7	445	46.2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		120	2	7	445	51.8
		150	2	7	445	64.7

Contact Wire as per IS 3476:1986 HARD DRAW COPPER TROLLY AND CONTACT WIRE

Cross Sectional Area	Standard weight a	Maximum Resistance at 20°C b	Minimum Tensile Strength	Conventional limit of elasticity	Minimum Elongation in 200 mm	Minimum Number of bending							
mm²	kg/km	ohm/km	Kg/mm ²	Kg/mm ²	%	Nos							
80	711.2	0.2275	38	32.5	3	8							
100	889	0.1818	36.5	31	3	7							
107	951.2	0.1699	36.5	31	3	7							
150	1333.5	0.1212	35.6	31	3	6							
161	1431	0.1125	33	-	3	6							
193	1715.8	0.0936	31	-	4	5							
a valu	a value correspond to the standard cross sectional area												
b valu	b value correspond to the minimum cross sectional area and minimum tensile strength of wire												
c For	information only	у	For information only										

HARD DRAW CADMIUM-COPPER TROLLY AND CONTACT WIRE

Cross Sectional Area	Standard weight	Maximum Resistance at 20°C	Minimum Tensile Strength	Conventional limit of elasticity	Minimum Elongation in 200 mm	Minimum Number of bending
	а	b		С		
mm²	kg/km	ohm/km	Kg/mm²	Kg/mm²	%	Nos
100	894.5	0.2116	44	37.5	2.5	7
107	957.1	0.1977	44	37.5	2.5	7
150	1342	0.1411	44	37.5	2.5	6

a = value correspond to the standard cross sectional area

c = For information only

b = value correspond to the minimum cross sectional area and minimum tensile strength of wire

APAR CONTACT WIRES

Contact Wire as per RDSO AIL-ETI-OHE-76-6-97

Material Group Nominal Densit		Final Modulus of	CLE	Maximum Resistivity at 20°C	Temperature Coefficient	
Material Group	at 20°C (g/cm³)	Elasticity (Gpa)	(per °C)	ohm.mm²/Km	(per °C)	
Copper Cadmium	8.945	120	17 x 10 ⁻⁶	21.769	0.0031	
Copper Magnesium	8.89	120	17 x 10 ⁻⁶	*	0.00185	

1) In a temperature range from -50°C up to 100°C the coefficient of temperature for the resistance is constant

* Under progress

CATENARY WIRES

Physical Constant (*As epr RDSO)

	For Copper wire bar/copper cathode/CC copper Rod											
Cu + Ag	+ Ag Bi + Te + Se Pb Sb AS Sn + NI + Fe + Si + Zn + CO Oxygen						n					
99.90%	<20 ppm	<5 ppm	<4 p	pm	<5 ppm		<50	ppm	<450 ppm			
				For C	Cadmiu	m Copper	Billets					
Cu + Ag	Cd	Р	_	Bi + Te + Se		Pb	Sb	AS	Sn + Ni + Fe + Si + Zn + CO	Oxygen		
>= 98.90 %	0.7 to 0.1 %	<50 pp	om	<20	ppm	<5 ppm	<4 ppm	<5 ppm	<50 ppm	<450 ppm		

Cadmium Copper (CuCd) Catenary Wire (*As epr RDSO) Chemical Composition

Nominal equivalent area of hard drawn copper	No. of strand and diameter of wire	Approx overall Diameter	Weight per km			km at	nce per 20°C ed to std ight	Minimum breaking load of conductor	Calculated area of cadmium copper
2			Std	Max	Min	Std	Max	N4	2
mm²	mm	mm	Kg	Kg	Kg	Ohm	Ohm	Kgf	mm²
20	7/2.10	6.3	218.7	223	214.3	0.905	0.914	1443	24.04
53	19/2.10	10.5	597.3	609.2	585.3	0.336	0.339	3920	64.84
102	37/2.10	14.7	1169	1193	1146	0.173	0.175	7650	125.6

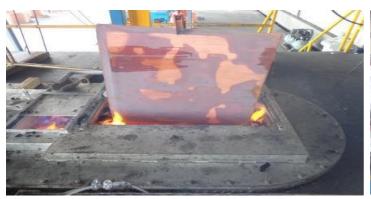
CATENARY WIRES

Mechanical and Electrical properties of Catenary Wire

Cross Section	ccc	ameter of Standard CC wire Weight per		Resistance per Km at 20°C b	Tensile Strength	Conventional Limit of Elasticity	Elongation in 200 mm	No. of Bending	Hardness
Nominal	Min	Max	Nominal	Nominal	Min	Min	Min	Min	Min
mm²	mm	mm	Kg	Ohms	Kgf/mm ²	Kgf/mm ²	%	Nos	BHN
107	19	22	951.2	0.166	36.5	31	3	7	107
150	23	27	1333.5	0.1184	36.5	31	3	6	107
161	23	27	1431.3	0.1103	36.5	31	3	6	107
193	23	27	1715.8	0.0921	36.5	31	3	5	107
a & b =	Value	corres	pond to nomin	al cross section a	rea of HDG0	Contact wire			

Magnesium Copper (CuMg) Catenary Wire (*As epr RDSO) Chemical Composition

Cu + Ag	Mg	Bi	Pb	Р	Oxygen
Remaining	0.1 to 0.7 %	<10 ppm	<5 ppm	<50 ppm	<20 ppm



CATENARY WIRES

Mechanical and Electrical properties of Catenary Wire

equivalent area	No. of strand and diameter of wire	• • •	W	Weight per km to std Weight				cadmillim	
2	,		Std	Max	Min	Std	Max	V-4	mm²
mm²	mm	mm	Kg	Kg	Kg	Ohm	Ohm	Kgf	IIIII
19.84	7/2.10	6.3	217.6	221.76	213.58	0.8958	0.9123	1432.7	24.05
53.5	19/2.10	10.5	594.4	605.78	583.41	0.3322	0.3387	3915.9	64.85
103.62	37.2.10	14.7	1163.5	1185.8	1142	0.1717	0.175	7625.7	125.6

As per RDSO Draft Specification, Approval Under progress

APAR JUMPER WIRES

Material	: 160 Sq. mm (19/7/:	1.25 mm) Copper Jumper Wire		
Sr. No.	Parameter	Specified Value		
	On St	randed Conductor		
1	Over all Diameter	18.75 mm		
2	Resistance	0.1117 ohm/Km (Max.)		
3	Weight	1504.00 Kg/Km		
4	Configuration	19/7/1.25 mm		
5	Lay Length	1st Layer - 30 to 60 mm		
		2nd Layer - 90 to 180		
		3rd Layer - 150 to 300		
	On Single	e Wire After Stranding		
	•	Std : 1.250 mm		
1	Diameter	Max : 1.263 mm		
		Min : 1.237 mm		
2	Elongation	20% (min)		
Material	105 Sq. mm (19/7/	1.016 mm) Copper Jumper Wire		
Sr. No.	Parameter	Specified Value		
	On St	randed Conductor		
1	Over all Diameter	15.24 mm		
2	Resistance	0.1689 Ω /Km (Max.)		
3	Weight	993.6 Kg/Km		
4	Configuration	19/7/1.016 mm		
5	Lay Length	1st Layer - 24 to 49 mm		
		2nd Layer - 73 to 146 mm		
		3rd Layer - 122 to 244 mm		
	On Singl	e Wire After Stranding		
I		Std : 1.016 mm		
1	Diameter	Max : 1.026 mm		
		Min : 1.006 mm		
2	Elongation	20% (min)		
Material	: 50 Sq. mm (19/1.80	mm) Copper Jumper Wire		
Sr. No.	Parameter	Specified Value		
	On St	randed Conductor		
1	Over all Diameter	9.00 mm		
2	Resistance	0.3705 Ω /Km (Max.)		
3	Weight	438.0 Kg/Km		
4	Configuration	19/1.80 mm		
5	Lay Length	1st Layer - 54 to 86 mm		
		2nd Layer - 90 to 144 mm		
On Single Wire After Stranding				
,	D:	Std: 1.800 mm		
1	Diameter	Max : 1.818 mm Min : 1.782 mm		
2	Elongation	20% (min)		
-				

FEEDER WIRE & SPAN WIRE

Material : 150 Sq. mm (37/2.25 mm) Copper Feeder Wire				
Sr. No.	Parameter	Specified Value		
On Stranded Conductor				
1	Over all Diameter	15.75 MM		
2	Resistance	0.1248 ohm/Km (Max.)		
3	Weight	1299.48 to 1352.52 Kg/Km		
4	Configuration	1+6+12+18		
5	Lay Length	1st Layer - 90 to 112 (RHS)		
		2nd Layer - 135 to 157 (LHS)		
		3rd Layer - 168 to 202 (RHS)		
On Single Wire Before Stranding				
1	Diameter	2.227 to 2.272 mm		
2	Weight	34.653 to 36.067 Kg/Km		
3	Resistance	4.563 ohm/Km (Max.)		
4	Breaking Load	179 Kgf Min		
5	Tensile Strength	46 Kgf/mm ²		
On Single Wire After Stranding				
1	Diameter	2.227 to 2.272 mm		
2	Weight	34.653 to 36.067 Kg/Km		
3	Resistance	4.563 ohm/Km (Max.)		
4	Breaking Load	179 Kgf Min		
5	Tensile Strength	46 Kgf/mm ²		

Material : 130 Sq. mm (37/2.10 mm) span Wire				
Sr. No.	Parameter	Specified Value		
On Stranded Conductor				
1	Diameter	14.7 mm approx.		
2	Resistance	0.1750 ohm/Km (Max.)		
3	Weight	1145.8 to 1192.6 Kg/Km		
4	Configuration	1 + 6 + 12 + 18		
5	Lay Length	1st Layer - 84 to 105 (RHS)		
		2nd Layer - 126 to 147 (LHS)		
		3rd Layer - 158 to 189 (RHS)		
On Single Wire Before Stranding				
1	Diameter	2.08 to 2.12mm		
2	Weight	30.36 to 31.60		
3	Resistance	6.348 ohm/Km (Max.)		
4	Breaking Load	225 Kgf Min		
5	Tensile Strength	66.14 Kgf/mm ²		
On Single Wire After Stranding				
1	Diameter	2.08 to 2.12mm		
2	Weight	30.36 to 31.60		
3	Resistance	6.348 ohm/Km (Max.)		
4	Breaking Load	208 Kgf Min		
5	Tensile Strength	61.18 Kgf/mm ²		

Corporate Office

APAR Industries Limited APAR House, Corporate Park, V N Purav Marg Chembur, Mumbai 400 071, India

Tel: +91 22 25263400 / 6780 0400

Fax: +91 22 25246326

Registered Office

301 / 306, Panorama Complex, RC Dutt Road, Vadodara 390 007, INDIA

Tel: +91 265 2323 175 / 2323 176

Send your enquiry to: corporate@apar.com | Web : www.apar.com

