ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

ALUMINUM EC WIRE ROD GRADE 1350(H12) - APAR Industries Limited.

EPD HUB, HUB-0570

Publishing date 7 July 2023, last updated on 7 July 2023, valid until 7 July 2028

GENERAL INFORMATION

MANUFACTURER

Manufacturer	APAR Industries Limited
Address	Factory -Unit –III , Survey no. 127/1/2 Village: Athola, Umarkoi Road, Silvassa – 396230, India Registered Office - 301, Panorama Complex, R.C. Dutt Road, Vadodara - 390007, India
Contact Details	epd.info@apar.com
Website	www.apar.com

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Electrical product
Category of EPD	Sister EPD, (Parent EPD: HUB-0568)
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Mr. Rahul Galghate & Mr. Madanmohan Padhi
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
LFD Verification	Internal certification ☑ External verification
EPD verifier	Haiha Nguyen, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Aluminum EC Wire Rod Grade 1350 (H12)
Additional labels	-
Product reference	WG22A096
Place of production	Silvassa, DNH-396230 India
Period for data	Calendar year 2021
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	Not Relevant

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg of Aluminum EC wire rod.
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	7.73
GWP-total, A1-A3 (kgCO2e)	7.71
Secondary material, inputs (%)	1.16
Secondary material, outputs (%)	85.0
Total energy use, A1-A3 (kWh)	29.8
Total water use, A1-A3 (m3e)	0.0299

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

APAR Industries was started in 1958, in India. Over 60 years later, we have grown into a diversified billion dollar company, and expanded to over 140 countries as a highly trusted manufacturer and supplier of conductors, a wide variety of cables, specialty oils, polymers and lubricants. At APAR, we have been able to excel at what we do because of who we are: relentless innovators who are constantly pushing ourselves to discover, perfect and deliver tomorrow's solutions today

PRODUCT DESCRIPTION

Fig. 1 Aluminum Wire Rod 1350 H12 Grade

Aluminum wire rod 1350 H12 Grade H (As Strain Hardened) temper as shown in Fig. 1 this rod tensile strength has been increased by strain hardening, possibly followed by a thermal treatment to reduce the tensile strength to a desired level. This rod used in overhead power conductor & insulated power cable, has good conductivity, is light weight an excellent compatibility with most common insulations used by the wire and cable industry.

Resistivity: 28.035 (uΩm)Conductivity: 61.5 %

Tensile strength: 83-117 N/mm²

This Continuous cast and rolled Aluminum rod used for electrical and mechanical purpose. In addition to Aluminum wire rod 1350 H12 Grade some of the grades produced by APAR Industries Limited India, among the others, include 1100, 1120, 1350, 1370, 6061, 6063, 6101 and 6201

All rods meets the international standard specification ASTM, IEC, EN, NFC, DIN etc.

Rod Sizes: 12.50mm, 9.50mm, and 7.60mm.

Efficient packaging reduces the weight, Volume and Transportation cost. By packing order in units optimal to customer's processing needs. For customer have choice of receiving the order in coils and packaging possibilities such as pallets. We even offer packaging in different weight increment up to a total weight of 2.0 tone.

Further information can be found at www.apar.com.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	100	ASIA
Minerals	-	-
Fossil materials	-	-
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0.0067

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of Aluminum EC wire rod,
Mass per declared unit	1 kg
Functional unit	-
Reference service life	50 Years

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0, 1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Prod	Product stage			mbly age		Use stage					End	of lif	e sta _i	ge	Beyond the system boundaries	
A1	A2	A3	A4	A5	B1 B2 B3			B4	B5	В6	В7	C1	C2	C3	C4	D
х	x	x	х	х	MND	MND	MND	MND	MND	MND	MND	х	х	х	х	×
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse

Modules not declared = MND.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the production loss & material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Continuous cast and rolled Aluminum rod made for electrical and mechanical purpose. The raw materials in the form of aluminum ingots are transported to company as production facility, where aluminum ingot is converted to wire rod to the required dimension through continuous castings and rod rolling process. There is no insulation materials present in the product. The manufacturing processes require electricity and fuels for the different equipment as well as heating. Certain ancillary materials are also included.

The finished products is packed in two metric ton coils in wooden pallets and the exposed outer surface of wire rod is covered with a polypropylene sheet before being sent to user site. The impacts associated with the packaging and material waste during production 0.8 % are excluded in this life-cycle assessment model, following the EN 15804+A2:2019 Chapter 6.3.6 & 6.4.4

PRODUCT LIFE-CYCLE

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Environmental impacts from unloading the material from site include waste packaging materials (A5) and release of biogenic carbon dioxide from waste processing of wood palate. Wood palate is considered to be incinerated for energy recovery The packaging material were not considered in the present life-cycle assessment model, as mentioned in the previous section (EN 15804+A2:2019 Chapter 6.3.6, & 6.4.4. Electricity consumption for installation is assumed to be 0.0283 MJ of product for stringing the conductors using a crane Transportation distance is defined according to the PCR. Average distance of transportation from production plant to building site is 13858 km and the transportation method is lorry and container ship. Vehicle capacity utilization volume factor is assumed to be 100 % which means full load. In reality, it may vary but as role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Empty palate returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients. Transportation does not cause losses as products are packaged properly. Also, volume capacity utilization factor is assumed to be 100 % for the nested packaged products.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

Energy consumption is assumed to be 0.01 Kwh/kg of diesel to be unloaded the material. It is assumed that the waste is collected separately and transported to the waste treatment center. Transportation distance to treatment is assumed as 100 km and the transportation method is assumed to be lorry (C2). Module C3 accounts for energy and resource inputs for sorting and treating these waste streams - 99% of aluminum is assumed to be recycled. Due to the material and energy recovery potential of aluminum, a part of the end- of-life product is converted into recycled raw materials.

MANUFACTURING PROCESS

Description of system boundaries: Cradle to gate with options, Modules C1–C4, Module D and with optional module A4-A5

Raw Material supplier

Transportation to APAR

APAR Industries Limited

Aluminium Wire Rod

Alloying

Continuous Casting

Packaging

Transport to site

Warehouse

Recycling Potential

Demolition

Unloading

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The packaging and material loss in production has been excluded from the model according to EPD Hub PCR Rule. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Mass allocation
Packaging materials	Mass allocation
Ancillary materials	Mass allocation
Manufacturing energy and waste	Mass allocation

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	Not Relevant

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3
GWP – total ¹⁾	kg CO₂e	7.41E0	4.63E-2	2.52E-1	7.71E0	1.26E0	1.74E-2	MND	MND	MND
GWP – fossil	kg CO₂e	7.41E0	4.62E-2	2.76E-1	7.73E0	1.27E0	2.74E-3	MND	MND	MND
GWP – biogenic	kg CO₂e	5.73E-3	7.51E-6	-2.48E-2	-1.9E-2	9.24E-4	1.46E-2	MND	MND	MND
GWP – LULUC	kg CO₂e	8.1E-4	2.18E-5	3.36E-5	8.66E-4	3.83E-4	2.47E-7	MND	MND	MND
Ozone depletion pot.	kg CFC-11e	5.02E-7	9.79E-9	4.47E-8	5.57E-7	2.99E-7	5.71E-10	MND	MND	MND
Acidification potential	mol H⁺e	3.56E-2	6.17E-4	9.77E-4	3.72E-2	5.34E-3	2.87E-5	MND	MND	MND
EP-freshwater ²⁾	kg Pe	8.4E-8	3.73E-7	3.83E-6	4.28E-6	1.03E-5	1.24E-8	MND	MND	MND
EP-marine	kg Ne	4.97E-3	1.57E-4	1.7E-4	5.3E-3	1.61E-3	1.27E-5	MND	MND	MND
EP-terrestrial	mol Ne	5.59E-2	1.75E-3	1.9E-3	5.96E-2	1.78E-2	1.4E-4	MND	MND	MND
POCP ("smog") ³⁾	kg NMVOCe	1.81E-2	4.72E-4	5.78E-4	1.91E-2	5.72E-3	3.81E-5	MND	MND	MND
ADP-minerals & metals ⁴⁾	kg Sbe	1.89E-5	9.33E-7	2.83E-7	2.01E-5	2.17E-5	5.87E-9	MND	MND	MND
ADP-fossil resources	MJ	1.01E2	6.52E-1	3.82E0	1.06E2	1.98E1	3.69E-2	MND	MND	MND
Water use⁵)	m³e depr.	8.52E-1	2.17E-3	6.9E-2	9.23E-1	7.36E-2	-4.62E-5	MND	MND	MND

Impact category	Unit	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	MND	MND	MND	MND	7.34E-3	9.1E-3	2.66E-1	6.08E-3	-5.78E0
GWP – fossil	kg CO₂e	MND	MND	MND	MND	7.33E-3	9.09E-3	2.65E-1	6E-3	-5.6E0
GWP – biogenic	kg CO₂e	MND	MND	MND	MND	5.77E-6	6.6E-6	5.76E-4	7.48E-5	-3.66E-2
GWP – LULUC	kg CO₂e	MND	MND	MND	MND	1.03E-6	2.74E-6	1.59E-4	6.25E-6	-1.41E-1
Ozone depletion pot.	kg CFC-11e	MND	MND	MND	MND	1.56E-9	2.14E-9	1.4E-8	6.75E-10	-7.09E-7
Acidification potential	mol H⁺e	MND	MND	MND	MND	1.02E-4	3.82E-5	1.2E-3	4E-5	-3.72E-2
EP-freshwater ²⁾	kg Pe	MND	MND	MND	MND	2.87E-8	7.39E-8	7.47E-6	2.12E-7	-3.03E-4
EP-marine	kg Ne	MND	MND	MND	MND	4.5E-5	1.15E-5	2.08E-4	9.35E-6	-3.97E-3
EP-terrestrial	mol Ne	MND	MND	MND	MND	4.93E-4	1.27E-4	2.4E-3	1.05E-4	-4.39E-2
POCP ("smog") ³⁾	kg NMVOCe	MND	MND	MND	MND	1.29E-4	4.08E-5	6.76E-4	3.1E-5	-1.67E-2
ADP-minerals & metals ⁴⁾	kg Sbe	MND	MND	MND	MND	3.94E-8	1.55E-7	4.5E-6	4.66E-8	-2.45E-5
ADP-fossil resources	MJ	MND	MND	MND	MND	9.82E-2	1.41E-1	1.76E0	8.44E-2	-8.51E1
Water use ⁵⁾	m³e depr.	MND	MND	MND	MND	1.24E-4	5.26E-4	3.06E-2	2.4E-3	-3.88E-1

ENVIRONMENTAL IMPACT DATA

MND

MND

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	2	A3	A1-A3	A4		A5	B1	B2	B3
Particulate matter	Incidence	4.07E-7	2.62E	-9 4	.35E-9	4.14E-7	1.15	-7 7	.36E-10	MNE	MND	MND
Ionizing radiation ⁶⁾	kBq U235e	9.75E-2	2.74E	-3 1	14E-2	1.12E-1	8.65	-2 1	L.55E-4	MNE	MND	MND
Ecotoxicity (freshwater)	CTUe	1.17E2	5.12E	-1 3	3.85E0	1.21E2	1.51	E1 2	2.32E-2	MNE	MND	MND
Human toxicity, cancer	CTUh	1.01E-8	1.88E-	-11 2	.14E-9	1.23E-8	3.87E	-10 1	.15E-12	MNE	MND	MND
Human tox. non-cancer	CTUh	1.68E-7	5.05E	-10 3	.19E-7	4.88E-7	1.79	-8 4	.04E-11	MNE	MND	MND
SQP ⁷⁾	-	5.2E0	3.85E	-1 1	16E-1	5.7E0	2.99	E1 1	L.25E-3	MNE	MND	MND
Impact category	Unit	B4	B5	B6	B7	C1		C2	C3		C4	D
Particulate matter	Incidence	MND	MND	MND	MNI	D 1.45E-	10 8.	22E-10	1.56E	-8	5.45E-10	-3.54E-7
Ionizing radiation6)	kBq U235e	MND	MND	MND	MNI	0 4.24E	-4 6	18E-4	5.27E	:-3	2.86E-4	-5.88E-1
Ecotoxicity (freshwater)	CTUe	MND	MND	MND	MNI	O 6.2E-	2 1	08E-1	7.72E	E 0	9.3E1	-1.02E2
Human toxicity, cancer	CTUh	MND	MND	MND	MNI	1.12E-	12 2.	76E-12	1.54E-	-10	5.21E-12	-1.11E-8
Human tox. non-cancer	CTUh	MND	MND	MND	MNI	0 8.96E-	11 1.:	28E-10	6.49E	-9	1.47E-10	2.55E-9

MND

MND

2.46E-3

2.13E-1

7.67E-1

1.43E-1 -4.16E0

USE OF NATURAL RESOURCES

SQP7)

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3
Renew. PER as energy ⁸⁾	MJ	1.26E0	6.44E-3	2.09E-1	1.48E0	2.49E-1	2.22E-4	MND	MND	MND
Renew. PER as material	MJ	0E0	0E0	2.35E-1	2.35E-1	0E0	-2.35E-1	MND	MND	MND
Total use of renew. PER	MJ	1.26E0	6.44E-3	4.44E-1	1.71E0	2.49E-1	-2.35E-1	MND	MND	MND
Non-re. PER as energy	MJ	1.01E2	6.52E-1	3.82E0	1.06E2	1.98E1	3.69E-2	MND	MND	MND
Non-re. PER as material	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND
Total use of non-re. PER	MJ	1.01E2	6.52E-1	3.82E0	1.06E2	1.98E1	3.69E-2	MND	MND	MND
Secondary materials	kg	1.16E-2	0E0	0E0	1.16E-2	0E0	0E0	MND	MND	MND
Renew. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND
Non-ren. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND
Use of net fresh water	m³	2.91E-2	9.76E-5	6.16E-4	2.99E-2	4.12E-3	5.7E-6	MND	MND	MND

Impact category	Unit	B4	B5	В6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	MND	MND	MND	MND	5.63E-4	1.78E-3	1.84E-1	4.98E-3	-3.63E1
Renew. PER as material	MJ	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Total use of renew. PER	MJ	MND	MND	MND	MND	5.63E-4	1.78E-3	1.84E-1	4.98E-3	-3.63E1
Non-re. PER as energy	MJ	MND	MND	MND	MND	9.82E-2	1.41E-1	1.76E0	8.44E-2	-8.51E1
Non-re. PER as material	MJ	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Total use of non-re. PER	MJ	MND	MND	MND	MND	9.82E-2	1.41E-1	1.76E0	8.44E-2	-8.51E1
Secondary materials	kg	MND	MND	MND	MND	0E0	0E0	0E0	0E0	7.4E-1
Renew. secondary fuels	MJ	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Non-ren. secondary fuels	MJ	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Use of net fresh water	m³	MND	MND	MND	MND	8.51E-6	2.94E-5	8.9E-4	6.73E-5	-3.48E-2

ENVIRONMENTAL IMPACT DATA

END OF LIFE – WASTE

Impact category	Unit	A1	A2		43	A1-A3	A4	A5	B1	B2	B3
Hazardous waste	kg	1.3E0	8.25E	-4 5.7	71E-3	1.31E0	1.92E-2	9.27E-5	MND	1.3E0	8.26E-4
Non-hazardous waste	kg	3.83E0	3.63E	-2 1.4	17E-1	4.01E0	2.13E0	1.04E-2	MND	3.83E0	3.64E-2
Radioactive waste	kg	1.05E-4	4.39E	-6 1.8	35E-5	1.27E-4	1.36E-4	2.53E-7	MND	1.05E-4	4.39E-6
Impact category	Unit	B4	B5	В6	B7	C1	C2	C3		C4	D
Hazardous waste	kg	MND	MND	MND	MND	7.8E-5	1.37E-	4 0E0) :	L.94E-3	-1.44E0
Non-hazardous waste	kg	MND	MND	MND	MND	1.17E-	3 1.52E-	-2 OEC) :	1.48E-1	-1.4E1
Radioactive waste	kg	MND	MND	MND	MND	6.97E-	7 9.7E-	7 OEC) :	3.28E-7	-5.01E-4

END OF LIFE - OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3
Components for re-use	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND
Materials for recycling	kg	0E0	0E0	1.59E-2	1.59E-2	0E0	0E0	MND	MND	MND
Materials for energy rec	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND
Exported energy	MJ	0E0	0E0	0E0	0E0	0E0	3.39E0	MND	MND	MND
Impact category	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Materials for recycling	kg	MND	MND	MND	MND	0E0	0E0	8.5E-1	0E0	0E0
Materials for energy rec	kg	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Exported energy	MJ	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Global Warming Pot. kg CO2e 7.41E0 4.58E-2 2.74E-1 7.73E0 1.26E0 2.71E-3 MND MND MND MND	impact category	Unit	AI	AZ	A3	A1-A3	A4	A5	BT	BZ	B3
Acidification kg SO2e 2.94E-2 4.85E-4 7.77E-4 3.07E-2 2.59E-3 4.96E-6 MND MND MND Eutrophication kg PO43e 5.5E-3 6.52E-5 1.64E-4 5.73E-3 5.23E-4 1.95E-6 MND MND MND POCP ("smog") kg C2H4e 2.5E-3 1.42E-5 3.19E-5 2.54E-3 1.64E-4 4.17E-7 MND MND MND ADP-elements kg Sbe 1.89E-5 9.33E-7 2.83E-7 2.01E-5 2.17E-5 5.87E-9 MND MND MND ADP-fossil MJ 1.01E2 6.52E-1 3.82E0 1.06E2 1.98E1 3.69E-2 MND MND MND Impact category Unit B4 B5 B6 B7 C1 C2 C3 C4 D Global Warming Pot. kg C02e MND MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg C7-11e	Global Warming Pot.	kg CO2e	7.41E0	4.58E-2	2.74E-1	7.73E0	1.26E0	2.71E-3	MND	MND	MND
Eutrophication kg PO43e 5.5E-3 6.52E-5 1.64E-4 5.73E-3 5.23E-4 1.95E-6 MND MND MND POCP ("smog") kg C2H4e 2.5E-3 1.42E-5 3.19E-5 2.54E-3 1.64E-4 4.17E-7 MND MND MND ADP-elements kg Sbe 1.89E-5 9.33E-7 2.83E-7 2.01E-5 2.17E-5 5.87E-9 MND MND MND ADP-fossil MJ 1.01E2 6.52E-1 3.82E0 1.06E2 1.98E1 3.69E-2 MND MND MND Impact category Unit B4 B5 B6 B7 C1 C2 C3 C4 D Global Warming Pot. kg CO2e MND MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e	Ozone depletion Pot.	kg CFC-11e	4.29E-7	7.77E-9	3.54E-8	4.72E-7	2.38E-7	4.53E-10	MND	MND	MND
POCP ("smog") kg C2H4e 2.5E-3 1.42E-5 3.19E-5 2.54E-3 1.64E-4 4.17E-7 MND MND MND ADP-elements kg Sbe 1.89E-5 9.33E-7 2.83E-7 2.01E-5 5.87E-9 MND MND MND ADP-fossil MJ 1.01E2 6.52E-1 3.82E0 1.06E2 1.98E1 3.69E-2 MND MND MND Impact category Unit B4 B5 B6 B7 C1 C2 C3 C4 D Global Warming Pot. kg CO2e MND MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND	Acidification	kg SO2e	2.94E-2	4.85E-4	7.77E-4	3.07E-2	2.59E-3	4.96E-6	MND	MND	MND .
ADP-elements kg Sbe 1.89E-5 9.33E-7 2.83E-7 2.01E-5 2.17E-5 5.87E-9 MND MND MND MND ADP-fossil MJ 1.01E2 6.52E-1 3.82E0 1.06E2 1.98E1 3.69E-2 MND	Eutrophication	kg PO43e	5.5E-3	6.52E-5	1.64E-4	5.73E-3	5.23E-4	1.95E-6	MND	MND	MND
ADP-fossil MJ 1.01E2 6.52E-1 3.82E0 1.06E2 1.98E1 3.69E-2 MND MND MND Impact category Unit B4 B5 B6 B7 C1 C2 C3 C4 D Global Warming Pot. kg CO2e MND MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	POCP ("smog")	kg C2H4e	2.5E-3	1.42E-5	3.19E-5	2.54E-3	1.64E-4	4.17E-7	MND	MND	MND
Impact category Unit B4 B5 B6 B7 C1 C2 C3 C4 D Global Warming Pot. kg CO2e MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	ADP-elements	kg Sbe	1.89E-5	9.33E-7	2.83E-7	2.01E-5	2.17E-5	5.87E-9	MND	MND	MND
Global Warming Pot. kg CO2e MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	ADP-fossil	MJ	1.01E2	6.52E-1	3.82E0	1.06E2	1.98E1	3.69E-2	MND	MND	MND
Global Warming Pot. kg CO2e MND MND MND 7.28E-3 9.01E-3 2.62E-1 5.82E-3 -5.63E0 Ozone depletion Pot. kg CFC-11e MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5											
Ozone depletion Pot. kg CFC-11e MND MND MND 1.24E-9 1.7E-9 1.15E-8 5.51E-10 -7.11E-7 Acidification kg SO2e MND MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	Impact category	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
Acidification kg SO2e MND MND MND 7.24E-5 1.85E-5 9.91E-4 3.71E-5 -3.22E-2 Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	Global Warming Pot.	kg CO2e	MND	MND	MND	MND	7.28E-3	9.01E-3	2.62E-1	5.82E-3	-5.63E0
Eutrophication kg PO43e MND MND MND 1.63E-5 3.74E-6 3.62E-4 8.32E-6 -1.2E-2 POCP ("smog") kg C2H4e MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	Ozone depletion Pot.	kg CFC-11e	MND	MND	MND	MND	1.24E-9	1.7E-9	1.15E-8	5.51E-10	-7.11E-7
POCP ("smog") kg C2H4e MND MND MND MND 2.2E-6 1.17E-6 4.24E-5 2.16E-6 -3.29E-3 ADP-elements kg Sbe MND MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	Acidification	kg SO2e	MND	MND	MND	MND	7.24E-5	1.85E-5	9.91E-4	3.71E-5	-3.22E-2
ADP-elements kg Sbe MND MND MND 3.94E-8 1.55E-7 4.5E-6 4.66E-8 -2.45E-5	Eutrophication	kg PO43e	MND	MND	MND	MND	1.63E-5	3.74E-6	3.62E-4	8.32E-6	-1.2E-2
	POCP ("smog")	kg C2H4e	MND	MND	MND	MND	2.2E-6	1.17E-6	4.24E-5	2.16E-6	-3.29E-3
ADP-fossil MJ MND MND MND 9.82E-2 1.41E-1 1.76E0 8.44E-2 -8.51E1					A ANID	NAND	2 0 4 5 9	1 555 7	4 5 5 6	1 665 0	2 455 5
	ADP-elements	kg Sbe	MND	MND	MIND	טאואו	3.94E-8	1.55E-7	4.5E-0	4.00E-8	-2.45E-5

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited

07.07.2023

