

POWEROIL QUENCH SUPER 20 ACCELERATED HEAT TREATMENT OIL

POWEROIL QUENCH SUPER 20 is a low viscosity accelerated quenching oil. It is blended from select highly refined base stocks having excellent oxidation and thermal stability & low volatility. The high quenching rate of the oil is imparted by using a special additive pack in the product.

CHARACTERISTICS	POWEROIL QUNECH SUPER 20
Appearance	Clear Liquid
Colour	L 2.5
Density @ 29.5, °C, gm/cc	0.832
Viscosity @ 40 °C, cSt	19.0
Viscosity Index, Min.	100
TAN mg KOH/gm	0.2
Flash point °C (COC), Min.	180
Pour point °C, Max.	-6

The above properties are typical values and do not constitute specification of the product

APPLICATION:

- Suitable for quenching of high-speed tools, ball bearing, Rollers & Pins, Nuts & Bolts, Coil Springs & Crown Wheel & Pinions.
- Used in many critical applications where precision and uniformity of heat treatment are important.

PERFORMANCE BENEFITS:

FEATURES	BENEFITS
High and uniform/constant rate	Improved "As Quenched hardness".
of cooling	Deeper & Uniform hardening even in the core
Optimum viscosity at operating	Ensures proper Quenching, reduces carry over losses
temperature	and aids ease of cleaning post quenching operation
Low volatility at operating	Minimizes losses due to evaporation, leading to
temperatures	reduced top ups and hence reduced maintenance costs.
Slow cooling / Low rate of heat transfer in the final stage	Minimizes cracking & distortion of quenched parts.
	Uniforming heating even at the core
High thermal and Oxidation	Reduces sludge formation, minimizes oil thickening
stability	resulting in extended oil life